
Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 42

Improving Pre-computation for Verification of

Markov Decision Processes

Mohammadsadegh Mohagheghi

Department of Computer Science - Vali-e-asr Universityof Rafsanajn - Iran

Abstract: Probabilistic model checking of Markov Decision Processes is widely used in recent

years. Numerical iterative techniques are used to compute the quantitative properties of the

underlying models. Some graph-based methods can be used as pre-computation to improve the

performance of these iterative algorithms. In this paper we compare the impact of forward vs.

backward approaches for implementing these pre-computation algorithms, and we show that

the backward reachability analysis can reduce the running time of these pre-computations by

several orders of magnitude.

Keywords: Backward reachability analysis, Markov decision processes, Pre-computation,

Probabilistic model checking,

I. INTRODUCTION

Probabilistic model checking is a formal method that is used for verification of qualitative and

quantitative properties of systems with probabilistic behaviors [1], [2]. In this approach, a labeled

transitions system is used to model the system [3]. Markov Decision Processes (MDPs), Discrete-time

Markov Chains (DTMCs) and probabilistic timed automata (PTA) are examples of transition systems

for modeling systems with probabilistic behaviors. Probabilistic Computation Tree Logic (PCTL) is a

well-known formalism for specifying system properties that should be verified against the system

model [3], [4]. A probabilistic model checker is software tool that automatically verifies the proposed

properties (in PCTL) for the related model [1]. It reduces the problem of probabilistic model checking

to the computation of the maximum or minimum reachability probabilities. PRISM [5] is the most

prominent probabilistic model checker that is widely used in the recent years. In most cases, numerical

computations are needed for calculating these reachability probabilities. Value iteration and policy

iteration are two iterative numerical methods that are used in standard model checkers to compute the

related reachability probabilities [1], [6]. Some graph based computations can be performed for

accelerating iterative methods. For example a graph based pre-computation can detect those states for

which the optimal reachability probability is exactly one or zero (which are shown by Sy and Sn

respectively). These states can be disregarded in iterative computations and their values can be used for

computation of the remaining states [1,7]. In some cases, these precomputation is time consuming but

crucial for reward-based PCTL properties. For these class of properties the algorithm need to know all

states in Sy while the expected values for other states may be infinity and the iterative method can not

converge for these states[7].

In this paper we focus on maximum reachability probabilities. The value of these probabilities (and

also minimum reachability probabilities) is usually needed in order to perform the verification of PCTL

properties against MDPs [5], [8]. As the main contribution of our work, we use backward reachability

techniques for accelerating pre-computation algorithms. Note that the running time of the best

proposed method for pre-computation is in).(nnO where n is the size of the model [9]. We compare

the forward and backward approaches for implementing the standard pre-computation algorithms and

show that the backward technique reduces the time complexity of the standard algorithms for

http://www.ijntse.com/

Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 43

computing Sn and Sy sets.

We compare our backward technique with the forward on which is implemented in PRISM.

Experimental results show a significant improvement in the performance of pre-computation when we

use the backward technique. To the best of our knowledge, no previous work has compared the time

complexity of forward and backward approaches for precomputation algorithms and the running time

of them for real case studies.

The remainder of this paper is structured as follows: Section 2 reviews some related definitions. In

section 3 we compare the forward and backward precomputation methods and in section 4, we present

our experimental results and section 5 concludes the paper.

PRELIMINARIES

In this section we provide an overview of MDPs and some iterative algorithms for computing

optimal reachability probabilities against MDPs. The notations and definitions are mainly from [2], [4],

[5]. We use Dist(S) as the set of all discrete probability distributions over a finite set S, i.e., set of all

functions p : S -> [0,1] such that 1)(=
Ss

sp .

Definition 1 (Markov Decision Process) A Markov Decision Process (MDP) is a tuple

),,,(0 ActsSM = where S is a finite set of states, Ss 0 is an initial state, Act is a finite set of actions

and)(: SDistActS → is a probabilistic transition function. The size of M which is shown as |M| is

defined as the number of states of M plus the number of its transitions.

For every state Ss of an MDP M one or more actions of Act are defined as enabled actions. We

define this set as }defined is),(|{)( sActsAct = . For Ss and)(sAct we use),(sPost

for the set of  successors of s,)(sPost for all possible successors of s and Pre(s) for possible

predecessors of s [1], [2]:

},0)',,(|'{),(= ssSssPost 

),,()()( sPostsPost sAct=

)}'(|'{)(sPostsSsspre =

There are two steps to define a transition from a state s. First, one enabled action)(sAct is

selected non-deterministically. Secondly, according to the probability distribution),( s a successor

state 's is chosen randomly. We use)')(,(ss  to show the probability of a transition from s to 's by

the action)(sAct . A discrete-time Markov chain (DTMC) is an MDP for which every state has

exactly one enabled action. DTMCs are used to model systems with fully probabilistic behaviors [1],

[2], [7]. A path in an MDP model shows a possible interaction between the model and the environment.

It is defined as a non-empty (finite or infinite) sequence of states and actions of the form

...10

10 ⎯→⎯⎯→⎯
aa

ss where for every 0i we have Ssi  and)(ii sAct and),(1 iii sPosts + .

For a state Ss the set of all possible paths of the model that start from s are shown by sPath . In a

similar way, sFpath is used for the set of all finite paths. We use  to show a path and)(i to show

the (i+1)-th state of  , i.e.,)()(isi = . To resolve non-deterministic choices of an MDP M the notion

of adversary (sometimes called policy or scheduler) is usually used [1], [8].

Definition 2 (Deterministic Adversary) A deterministic adversary of an MDP M is a function

ActFPath→: that for every finite path i

aaa sss i⎯→⎯⎯→⎯⎯→⎯= −1...
1

1

0

0 selects an

enabled action)(ii sActa  . An adversary is called memory-less if it depends only on the last state of

http://www.ijntse.com/

Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 44

the path. We use
MAdv to show the set of all deterministic adversaries of M.

De_nition 3 (Quotient DTMC) The quotient DTMC for an MDP),,,(0 ActsSM = and a

deterministic finite-memory adversary  is the finite state DTMC),,(0 PsSM = where S and

0s are the same as in M and]1,0[: → SSP is a transition probability matrix and is defined as

)'))((,()',(sssssP = [5]. We use 
sPath for the set of all (infinite) paths of the quotient DTMC

M starting in a state s .

- Reachability Probabilities

A main class of properties that are proposed in PCTL and are needed to be verified against MDPs

includes reachability probabilities, i.e., the maximal or minimal probability of reaching a state in some

target set SF  when starting in a state Ss :

)(inf)(min FpFP sAdvs M


= ,

)(sup)(max FpFP sAdvs M


=

where the supremum and infimum range over all adversaries of M and

}))(.|({Pr)(FiiPathobFp sss =  
. The probability space 

sprob is defined over the

paths 
spath . More details about the definition of this probability space can be found in [1], [3].

Numerical computations are used to calculate these reachability probabilities. There are two general

approaches to perform these computations:

- Linear programming (LP)

- Iterative methods

The first approach can obtain exact values of reachability probabilities but is unable to scale on large

systems [1], [3]. Iterative methods on the other hand are used for practical systems but do not

guarantee for convergence [10]. Value and policy iteration are two standard iterative methods for

computing reachability probabilities. In practice most of probabilistic model checkers such as PRISM

[5], LIQUOUR [4] and PAT[11] use iterative methods.

II. PRE-COMPUTATION

This step is used to partition the state space S into three sets:

- }1)(|{ max == FPSsS s

y

- }0)(|{ max == FPSsS s

n

-)(? ny SSSS −=

Pre-computation can reduce the size of states for quantitative reachability computations and may

also accelerate the model checking process. Identifying the
yS and

nS sets of states usually improves

the precision of reachability probabilities. These three sets can also be defined for minimum

reachability probabilities [1], [6]. The significance of these pre-computations depends on the

properties and the numerical methods that are used for quantitative verification. The computation of
nS is essential when linear programming is used for computing reachability probabilities [6]. The

computation of these two sets is also essential for the convergence of iterative methods in the case of

optimal expected reward properties. In the remainder of this section, we review the standard algorithms

for computing the
nS and

yS sets. According to the data structure that is used to represent the

http://www.ijntse.com/

Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 45

information of the model, we consider two approaches for implementing these algorithms: the forward

approach that uses adjacency lists (an extension of sparse matrixes [12]) as the data structure, and the

backward approach that also uses the inverse adjacency list. In the forward approach, the information

of the transitions are sorted according to the source states and the),(sPost set can be computed easily

(each member of),(sPost can be computed in O(1)) but in general, the method has to consider all

transitions in order to compute the)(Pr se set (see [2] for more details).

In the backward approach, we restore the information of transitions while they are sorted according

to their destination states and we have an efficient implementation for computing the Pre(s) set and

each member of this set can be computed in O(1). We analyze the time complexity and the memory

overhead of these two approaches for implementing pre-computation algorithms.

The sparse matrix technique uses two levels of indexing to store the information of an MDP [12].

Using this technique, the forward approach needs ||12)1|(|4)1|(|4 transActS ++++ 4 (|S| + 1)

bytes where |S| is the number of states, |Act| is the number of actions and |trans| is the number of

transitions of the MDP.

Pre-computation for
nS

Algorithm 1 explains the standard method for computing the set nS . Starting from the set F, it uses a

BFS to compute those states that can reach the goal set. In the k-th iteration of the loop, 'R is the set of

states that can reach to the F set in k steps and can not reach to it in less than k steps. The algorithm

continues until reaching the fixed point; the point that no other states can be added to the 'R set. The

remaining states of S cannot reach the goal set and are in the
nS set.

R; / S 7.

; R' 6.

;R'R : R 5.

R; -)Pre(R' : R' 4.

 .3

; : ' .2

; : .1

}0)(|{Sset The :

S Fset target),Act,,s(S,M MDPAn :

for n computatioPre :Algorithm1

maxn

0

return

 while

do

Output

Input







=

=

=

=

==

=

−

FR

FR

FPSs

S

s

n

The worst case time complexity of Algorithm 1 is in |)||(| MSO  in the case of forward approach,

and it is linear in the size of the model in the case of the backward approach. The maximum number of

iterations of the while loop is |S|, and in each iteration, the algorithm needs to compute the Pre('R) set.

In the case of the forward approach, the algorithm should consider all of the transitions of the model to

compute the Pre('R) set where it takes O(|M|) time. On the other hand, in the case of the backward

approach, for each 'R set, the time for computing the Pre('R) is equal to the number of incoming

transitions to the states of 'R . In this case, each transition of M is considered at most once, because

each state Ss is added to 'R at most once. As a result, the worst case running time of Algorithm 1 is

equal to the size of M.

The backward approach uses an inverse adjacency list (that stores the information of transitions

http://www.ijntse.com/

Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 46

according to the destination states) to have an efficient access to the members of the Pre('R) set. This

data structure needs ||4 |1|4 transS ++ extra bytes. It is usually less than 50 percent of the space

for storing the information of the MDP. In the experimental results we compare the running time of the

forward and backward approaches for several case studies.

Pre-computation for
yS

Pre-computation for
yS set is shown in Algorithm 2 [1, 5].

R; / S 11.

;' .10

;" 9.

)};0)')(,(".'(.8

))''0)')(,(.(').((|{": .7

;:" .6

 .5

;: .4

;:' .3

.2

; : .1

}1)(|{Sset The :

S Fset target),Act,,s(S,M MDPAn :

for n computatioPre :Algorithm2

maxy

0

return

while

while

do

do

Output

Input

RR

RR

ssRs

RssssSssActSsRR

RR

FR

RR

SR

FPSs

S

s

y







→=

=

=

=

=

==

=

−







It uses a double fixed point iterative method with a nested while loop for computing the set of
yS

states [1]. Starting from S, the outer loop successively removes those states Ss , for which)(max FPs

is less than one. It induces a sequence of iR sets, where y

ii SRRRRS == +110 The inner

loop starts from F and iteratively adds those states 's to 'R for which)(max

' FPs is one. For the

remaining states (S - 'R), we are sure that they do not belong to
yS . If the algorithm only uses the

forward approach, it should consider all states and transitions of the model for computing the R set in

the inner loop (line 7). In the worst case, the number of iterations of the outer loop is equal to || S . It

means that the worst case time complexity of Algorithm 4 is in |)||(| 2 MSO  , if we use the forward

approach for representing the model. On the other hand, we use the inverse adjacency list as the data

structure for the backward approach in order to accelerate the computations of Algorithm 3. Line 7 of

this algorithm computes the set of states Ss that have at least one action)(sAct for which the

following conditions hold:

-)''),('.(' RssPostsSs → 

-),("' sPostRs 

Instead of considering every state Ss , the algorithm can consider the source state of those

transitions Mpss ),',,( for which '),(RsPost  (first condition) and "' Rs (second condition)

hold. To do so, for each "' Rs , the algorithm should have an efficient access to the set of transitions of the form

http://www.ijntse.com/

Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 47

Mpss ),',,( . It can be achieved by an inverse adjacency list. In addition, for each state Ss , the

algorithm can mark those actions)(sAct that '),(RSsPost − holds. In this way, the first

condition holds for every unmarked action. The reason is that for every '' RSs − we are sure that

1)'(max sP , which means the maximum reachability probability of s is less than one if it uses the

action  .

Algorithm 3 shows the details of the backward approach for computing the yS set. Although, it uses

the same idea of Algorithm 2, it also uses (lines 8 and 16) the inverse adjacency list in order to have an

efficient implementation of the backward approach. For each state Ss' , the inverse adjacency list

points to all pairs of states and actions of the form),(s that),(' sPosts holds.

R;

 RR'

M

RRt

R

R

FQ

FR

RR

SR

FPSs

S

s

y

 return .

endfor;

endfor;

doforeach

foreach

while; end

for; end

if; end

thenif

doforeach

dowhile

do

Output

Input

21

; 20.

 19.

 18.

a;mark 17.

 of p)t,,(s,n transitio 16.

 ' 15.

 14.

 13.

 12.

Q; tos Add .11

; tos Add 10.

 s and markednot is .9

 M of p)t,,(s,n transitio 8.

Q; from t state a remove 7.

empty not is Q .6

;: .5

;: .4

;:' .3

.2

; : .1

}1)(|{Sset The :

S Fset target),Act,,s(S,M MDPAn :

for n computatioPre Backward :3 Algorithm

maxy

0



−



=

=

=

=

==

=

−

while

do









The outer loop of Algorithm 3 is the same as the outer loop of Algorithm 2. The inner while loop

(lines 6 to 14) computes the R sets and works like the inner loop of Algorithm 2. It uses Q to consider

those states that are added to the R set. Using Q and the inverse adjacency list, it considers (in line 8) all

states Ss for which the second condition holds. The for loop (lines 15-19) marks those actions 

that lead to at least one state in S - R and cannot be used in the next iterations of the computation. Note

http://www.ijntse.com/

Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 48

that for each state RSt − (and hence RRt − '), we are sure that 1)(max tP (it also holds after each

termination of the inner while loop of Algorithm 2).

The maximal number of iterations of the outer while loop is equal to the number of states of S. In

each iteration, the algorithm should consider the set of transitions that lead to any state Rs , that it

takes O(|M|) time. The overall running time of the for loop is in O(|M|), because the condition

RRt − ' holds at most once for each St . Thus, the worst case time complexity of Algorithm 4 is in

|)||(| MSO  . Note that Algorithm 4 is another representation of Algorithm 3 that is proposed for

clarifying the backward approach for computing the yS set. The main contribution of this algorithm is

to use the inverse adjacency list in order to access each transitions of M (lines 8 and 16) in O(1). In

practice, the running times of the forward and backward algorithms for computing the yS and nS sets

depend on the number of iterations of their loops. In the experimental results, we compare the number

of iterations of these algorithms in both the forward and the backward approaches.

III. EXPERIMENTAL RESULTS

We have implemented our methods within the PRISM model checker, and we used its sparse engine

for this implementation. The current version of PRISM (4.4) supports value iteration, policy iteration,

Gauss-Seidel, and modified policy iteration for the explicit engine and only value iteration for the

sparse and MTBDD engines [12] as MDP solution methods. For better comparison, we implemented

Gauss-Seidel, policy iteration and modified policy iteration for the sparse engine. The current version

of PRISM has implemented pre-computation algorithms for BDD-based and sparse data-structures

[12].

Table 1. Case studies and the size of S, Sy and Sn sets

Model Parameter(s) |S| |Sy| |Sn| |S?|/|S|

consensus(N,K) 6 , 15 274,548 87,278 1,418 67.69%

consensus(N,K) 6 , 45 814,548 255,038 1,418 68.69%

consensus(N,K) 8 , 5 399,488 169,666 4,690 56.36%

consensus(N,K) 8 , 15 1,157,248 476,546 4,690 58.42%

csma (N,K) 3 , 6 14,222,529 10,120,379 169,206 27.65 %

csma (N,K) 4 , 4 133,301,572 514,457 5,360,396 95.59%

Leader (N) 7 2,095,783 2,095,783 0 0%

Leader (N) 8 18,674,484 18,674,484 0 0%

Wlan

collide(n,ttmx,col,k)

5 , 25 , 15 , 15 12,275,400 1,189,754 10,829,381 2.09 %

Wlan

collide(n,ttmx,col,k)

6 , 25 , 10 , 10 20,011,416 4,609,402 15,204,714 0.98 %

Wlan(n, ttmx, k) 6, 1500, 5 9,651,878 1,117,396 8,482,095 0.54 %

Firewire(dd,dl) 2500, 36 1,850,010 773,582 132,303 51.03 %

Firewire(dd,dl) 5000, 36 3,790,010 1,616,082 132,303 53.87%

Firewire(dd,dl) 2500, 128 2,957,080 786,726 270,901 64.23%

Firewire(dd,dl) 2500, 128 6,047,080 1,629,226 270,901 68.58%

Zeroconf(N,K) 15 , 10 3,001,911 197,004 957,807 61.53 %

Zeroconf(N,K) 20 , 14 4,427,159 171,851 1,160,964 69.89 %

Zeroconf(N,K) 20 , 18 5,477,150 128,427 1,240,173 75.01 %

http://www.ijntse.com/

Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 49

We used sparse data-structure for implementing the backward pre-compuation methods. We used six

standard case studies of PRISM, including wlan, zeroconf, firewire, csma, consensus and leader, as

have been used in previous related works [1], [4], [6], [8]. For more scalability of consensus and csma

examples, we applied symmetric reduction [4] (which is supported by PRISM) before other

computations.

Except for the leader example, used only for pre-computation comparison, other case studies are

used for comparing the improved pre-computation and reachability probability computation methods.

The experiences were executed on a corei7 2.8GHz processor with 8 GB of Ram running Ubuntu 14.

Table 1 describes more details of these case studies. The first two columns show the model names and

parameters. The third column shows the total number of states of each model, and the 4th and 5th

columns show the number of states in yS and nS sets. The last column shows the ratio of states in ?S .

Running times of the backward and forward approaches for pre-computation

We first compare the running time of pre-computation for these case studies. Table 2 shows the

running time of the forward and backward approaches for computing the Sy and Sn sets. The second

and the 5th columns show the running time of the forward approaches for computing the Sn and the Sy

sets and the 4th and the 7th columns show the running time for the backward approach for computing

these sets. All times are in seconds. The results show that the backward approach for pre-computations

performs faster than the forward approach by several orders of magnitude. The 3-th and 6th and 8th

columns of the table show the number of iterations of the forward and backward approaches for these

pre-comptations. For the Sn sets, the forward method usually needs hundreds or thousands of iterations,

and in each iteration, it uses a large number of states of the model for its computation.

Table 2. Performance comparison of the forward and backward pre-computation approaches

Model Forward

Sn time

Forward

Sn

iterations

Backward

Sn time

Forward

Sy time

Forward

Sy

iterations

Backward

Sy time

Backward

Sy

iterations

consensus(6,15) 1.1 817 0.01 196 66704 1.65 184

consensus(6,45) 2.7 2437 0.02 1293 564494 14.2 544

consensus(8,5) 2.5 369 0.05 230 16006 1.7 86

consensus(8,15) 5 1089 0.02 1297 119806 13.9 246

csma (3, 6) 1629 227 0.47 19543 1590 5.5 8

csma (4, 4) 58.9 172 0.11 378 818 0.5 6

Leader (7) 10.6 76 0.1 9.4 77 0.23 1

Leader (8) 61.2 90 0.16 54.5 91 1.5 1

Wlan_collide(5) 30.9 1740 0.01 47.2 3080 0.13 2

Wlan_collide(6) 79.6 3126 0.04 156.2 6152 0.17 2

Wlan(6, 1500, 5) 18.3 399 0.02 42.4 798 0.1 2

Firewire(2500,36) 1.48 376 0.02 2.15 2167 0.04 1

Firewire(5000,36) 1.61 376 0.03 4.16 4705 0.06 1

Firewire(2500,128) 1.86 468 0.05 1.9 2064 0.05 1

Firewire(5000,128) 1.76 468 0.05 3.36 4589 0.04 1

Zeroconf(15, 10) 3.87 140 0.07 72.6 2357 1.86 30

Zeroconf(20, 14) 5.96 156 0.1 106.48 2665 2.45 27

Zeroconf(20, 18) 7.5 172 0.13 117.42 2768 2.78 24

http://www.ijntse.com/

Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 50

The backward approach for the Sn set performs a BFS and terminates after the first iteration. It

considers each state at most once. For the Sy sets, the number of iterations of the forward approach is

computed as the total number of iterations of the inner while loop. For the backward approach, it is

defined as the number of iterations of the outer while loop of Algorithm 4. In both cases, the running

time of each iteration is linear in the size of the model. For most cases, the forward approach for

computing the Sy set needs thousands of iterations, while the backward approach usually terminates

after a few number of iterations.

IV. CONCLUSION

In this paper, we proposed a backward approach for pre-computation algorithms that compute the Sn

and Sy sets that are needed in probabilistic model checking. We also analyzed the memory

consumption of the proposed methods. Experimental results for PRISM model checker show a

considerable speed-up in the pre-computation algorithms. For future works, we plan to implement the

backward methods in BDD-based data structure.

REFERENCES

[1] Forejt V, Kwiatkowska M, Norman G, Parker D. Automated verification techniques for

probabilistic systems. InInternational School on Formal Methods for the Design of Computer,

Communication and Software Systems 2011 Jun 13 (pp. 53-113). Springer, Berlin, Heidelberg.

[2] Baier, Christel, and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

[3] Kwiatkowska, Marta, Gethin Norman, and David Parker. "Probabilistic Model Checking:

Advances and Applications." In Formal System Verification, pp. 73-121. Springer, Cham, 2018.

[4] Ciesinski, Frank, Christel Baier, Marcus Größer, and Joachim Klein. "Reduction techniques for

model checking Markov decision processes." In Quantitative Evaluation of Systems, 2008. QEST'08.

Fifth International Conference on, pp. 45-54. IEEE, 2008.

[5] Klein, Joachim, Christel Baier, Philipp Chrszon, Marcus Daum, Clemens Dubslaff, Sascha

Klüppelholz, Steffen Märcker, and David Müller. "Advances in probabilistic model checking with

PRISM: variable reordering, quantiles and weak deterministic Büchi automata." International Journal

on Software Tools for Technology Transfer (2017): 1-16.

[6] Kwiatkowska, Marta, David Parker, and Hongyang Qu. "Incremental quantitative verification for

Markov decision processes." In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st

International Conference on, pp. 359-370. IEEE, 2011.

[7] Nipkow, T. "Advances in probabilistic model checking." Software Safety and Security: Tools for

Analysis and Verification 33, no. 126 (2012).

[8] Brázdil, Tomáš, Krishnendu Chatterjee, Martin Chmelik, Vojtěch Forejt, Jan Křetínský, Marta

Kwiatkowska, David Parker, and Mateusz Ujma. "Verification of Markov decision processes using

learning algorithms." In International Symposium on Automated Technology for Verification and

Analysis, pp. 98-114. Springer, Cham, 2014.

http://www.ijntse.com/

Mohammadsadegh Mohagheghi / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 5, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 51

[9] Chatterjee, Krishnendu, and Monika Henzinger. "Faster and dynamic algorithms for maximal

end-component decomposition and related graph problems in probabilistic verification." In

Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pp.

1318-1336. Society for Industrial and Applied Mathematics, 2011.

[10] Baier, Christel, Joachim Klein, Linda Leuschner, David Parker, and Sascha Wunderlich.

"Ensuring the reliability of your model checker: Interval iteration for markov decision processes." In

International Conference on Computer Aided Verification, pp. 160-180. Springer, Cham, 2017.

[11] Sun, Jun, Yang Liu, Jin Song Dong, and Jun Pang. "PAT: Towards flexible verification under

fairness." In International Conference on Computer Aided Verification, pp. 709-714. Springer, Berlin,

Heidelberg, 2009.

[12] Parker, David Anthony. "Implementation of symbolic model checking for probabilistic systems."

PhD diss., University of Birmingham, 2003.

Biography: Mohammadsadegh Mohagheghi is a faculty member of department of Computer

science in Vali-e-asr university of Rafsanjan - Iran. His research interest is Formal methods, software

engineering and theory of computations.

http://www.ijntse.com/

